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Genes and human languages are discrete combinatorial systems �DCSs�, in which the basic building blocks
are finite sets of elementary units: nucleotides or codons in a DNA sequence, and letters or words in a
language. Different combinations of these finite units give rise to potentially infinite numbers of genes or
sentences. This type of DCSs can be represented as an alphabetic bipartite network �ABN� where there are two
kinds of nodes, one type represents the elementary units while the other type represents their combinations.
Here, we extend and generalize recent analytical findings for ABNs derived in �Peruani et al., Europhys. Lett.
79, 28001 �2007�� and empirically investigate two real world systems in terms of ABNs, the codon gene and
the phoneme-language network. The one-mode projections onto the elementary basic units are also studied
theoretically as well as in real world ABNs. We propose the use of ABNs as a means for inferring the
mechanisms underlying the growth of real world DCSs.
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I. INTRODUCTION

Two of the greatest wonders of evolution on earth, genes
and human languages, are discrete combinatorial systems
�DCSs� �1�. The basic building blocks of DCSs are finite sets
of elementary units, such as the letters in a language and
nucleotides �or codons� in a DNA sequence. Different com-
binations of these finite elementary units give rise to a po-
tentially infinite number of words or genes. Here, we analyze
a special class of complex networks as a model of DCSs. We
shall refer to them as alphabetic bipartite networks �ABNs�
in order to express the fact that the set of basic units, in both
human and genetic languages, can be considered as an Al-
phabet.

The ABNs are a subclass of bipartite networks �BNs�.
BNs have two disjoint partitions and edges link nodes from
one to the other partition, but never nodes belonging to the
same partition. In most of the BNs studied in the past both
the partitions grow with time. Typical examples of this type
of networks include collaboration networks such as the
movie actor �2–6�, article author �7–9�, and board-director
�10,11� networks. In the article-author network, for instance,
the articles and authors are the elements of the two partitions
also known as the ties and actors, respectively. An edge be-
tween an author a and an article m indicates that a has co-
authored m. The authors a and a� are collaborators if both

have coauthored the same article, i.e., if both are connected
to the same node m. The concept of collaboration can be
extended to represent, through BNs, several diverse phenom-
ena such as the city-people network �12�, in which an edge
between a person and a city indicates that the person has
visited that particular city, the signal-object network in lin-
guistics �13�, where an edge between an object j and a signal
i represents that a possible meaning of the i sign is the object
j, the bank company �14� or donor-acceptor network that
accounts for injection and merging of magnetic field lines
�15�.

Several models have been proposed to synthesize the
structure of these BNs, i.e., when both the partitions grow
unboundedly over time �2–5,16�. It has been found that for
such growth models, when each incoming tie node preferen-
tially attaches itself to the actor nodes, the emergent degree
distribution of the actor nodes follows a power law �2�. This
result is reminiscent of unipartite networks where preferen-
tial attachment results in power-law degree distributions
�17�.

Although there have been some works on nongrowing
BNs �18,19�, those like ABNs, where one of the partitions
remains fixed over time, have received comparatively much
less attention. In ABNs the partition that represents the basic
units in DCSs �e.g., letters, codons� is finite and constant
over time. In contrast, the partition that represents the dis-
crete combinations of basic units �e.g., words, genes� can
grow unboundedly over time. Notice that the order in which
the basic units are strung to form the discrete combination is*Corresponding author; ferperuani@gmail.com
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an important and indispensable aspect of the system, which
can be modeled within the framework of ABNs by allowing
ordering of the edges. Nevertheless, the scope of the present
work is limited to the analysis of unordered combinations.
Here, we assume a word to be a bag of letters and a gene a
collection of codons. Figure 1 illustrates the concepts
through the example of genes and codons.

As far as we know, the first empirical evidence of the
nonscale free character of the degree distribution of ABNs
has been reported in �20�, while the first systematic and ana-
lytical study of such BNs has been presented in �21�. The
growth model for ABNs, proposed in �21�, is based on pref-
erential attachment coupled with a tunable randomness com-
ponent. According to this model, there is a free parameter �
which controls the relative weight of preferential to random
attachment, thereby, regulating the randomness present in the
connections of the network. The growth model introduced in
�21� assumes that the edges are incorporated one by one.
Under this assumption, the exact expression for the emergent
degree distribution of the basic units has been derived. It has
been shown that it approaches a �-distribution asymptoti-
cally with time.

In this paper, we generalize the results derived in �21� to
include the situation in which multiple edges are incorpo-
rated to the system at each time step. This extension accounts
for the fact that in DCS the elements representing the dis-
crete combination, as genes or words, are formed by multiple
basic units. The use of ABN as a modeling tool of the tem-
poral evolution of DCS, where at each time step, a new dis-
crete combination element is added to the system, requires
this generalization. Here, we derive the exact growth model

for such processes and study the degree distribution of the
one-mode projection of the network onto the basic units. In
order to illustrate how the proposed framework can be used
as an analytical tool to study and interpret empirical data, we
applied the ABN theory to two well-known DCSs from the
domain of biology and language. Through the analyses of the
empirical data, we show the advantages and limitations of
ABNs as a modeling approach. We start with the codon-gene
network where codons play the role in the basic units while
genes are the discrete combinations of them �see Fig. 1�, and
observe that the higher the complexity of an organism, the
higher the value of the randomness parameter, i.e., �. The
analysis suggests that codon usage can be used to classify
organisms. We then apply the ABN theory to the phoneme-
language network, where phonemes are the basic units and
the sound systems of languages are the discrete combina-
tions, and show that the distribution of consonants over the
languages of the world can be satisfactorily described. The
study also illustrates certain limitations of the ABN growth
model. For instance, we show that the topological character-
istics of the network of co-occurrence of phonemes, which is
the one-mode projection of the aforementioned network, is
different from the theoretical prediction derived from a
simple ABN model. This indicates that although the ABN
growth model succeeds in explaining the degree distribution
of the basic units, the theory fails to describe the one-mode
projection. This points to the fact that the real dynamics of
the system is much more complex.

Finally, we contextualize the developed ABN theory in
the framework of Urn models and discuss the similarities and
differences with the Finite Pólya’s process �22,23� and the
rewiring model suggested by Evans and Plato �19�.

The article is organized as follows. Sec. II, formally de-
fines ABN and introduces the growth model and its corre-
sponding theoretical analysis. The two real networks—codon
gene and phoneme language—their topology and compari-
son with the theoretical models are described in Sec. III. In
Sec. IV, we place ABN theory in the context of Urn models
of probability theory. The concluding section summarizes the
obtained results and discusses the broader consequences of
the present work.

II. THEORETICAL FRAMEWORK FOR ABN

A. Formal definition and modeling

A bipartite graph G is a three-tuple �U ,V ,E�, where U
and V are mutually exclusive finite collections of nodes �also
known as the two partitions� and E�U�V is the collection
of edges that run between these partitions. We can also define
E as a multiset whose elements are drawn from U�V.
Clearly, the last definition of E allows multiple edges be-
tween a pair of nodes and the number of times the nodes u
�U and v�V are connected can be assumed to be the
weight of the edge �u ,v�. Note that although we are defining
E to be a collection of ordered tuples, the ordering is an
implicit outcome of the fact that edges only run between
nodes in U and V. In essence, we do not mean any directed-
ness of the edges.

FIG. 1. DNA modeled as a bipartite network �ABN�. The set U
consists of 64 codons, whereas the collection V of genes is virtually
infinite. Multiple occurrences of a codon in a gene have been rep-
resented here by multiedges. For instance, the codons “ACG” and
“AAU” have, respectively, 2 and 3 edges connecting to the node
gene3. Alternatively, this could have been represented by single
edges with weights 2 and 3.
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ABNs are a special type of bipartite networks, where one
of the partitions represents a set of basic units while the other
partition represents their combinations. The set of basic units
is essentially finite and fixed over time. Let us denote the
basic units by the nodes in U. Let each unique discrete com-
bination of the basic units be denoted as a node in V. There
exists an edge between a basic unit u�U and a discrete
combination v�V if u is a part of v. If u occurs w times in
v, the weight of the edge �u ,v� is w. Figure 1 illustrates these
concepts through the example of genes and codons.

B. Growth model

The growth of ABNs is described in terms of a simple
model based on preferential attachment coupled with a tun-
able randomness parameter. Suppose that the partition U has
N nodes labeled as u1 to uN. At each time step, a new node is
introduced in the partition V which connects to � nodes in U
based on a predefined attachment rule. Thus, in the model the
time refers to the number of nodes in V. Let vt be the node

added to V during the t-th time step, and Ã�ki
t� the probability

of attaching a new edge to a node ui, where ki
t refers to the

�weighted� degree of the node ui at time t. The attachment

kernel Ã�ki
t� takes the form,

Ã�ki
t� =

�ki
t + 1

�
j=1

N

��kj
t + 1�

, �1�

where the sum in the denominator runs over all the nodes in
U, and � is the tunable parameter which controls the relative
weight of preferential to random attachment. Thus, the
higher the value of �, the lower the randomness in the sys-
tem. Note that the numerator of the attachment kernel could
be rewritten as ki

t+�, where �=1 /� is a positive constant
usually referred to as the initial attractiveness �24�.

Any ABN has two characteristic degree distributions cor-
responding to its two partitions U and V. Here, we assume
that each node in V has degree � and concentrate on the
�weighted� degree distribution of the nodes in U. Let pk,t be
the probability that a randomly chosen node from the parti-
tion U has degree k after t time steps. We assume that ini-
tially all the nodes in U have degree 0 and there are no nodes
in V. Therefore,

pk,0 = �k,0, �2�

where �k,0 is delta Kronecker. Therefore, the expression for
the evolution of pk,t has the form,

pk,t+1 = �1 − �
i=1

�

Â�k,i,t�	pk,t + �
i=1

�

Â�k − i,i,t�pk−i,t, �3�

where Â�k , i , t� represents the probability at time t of a node
of degree k of receiving i new edges in the next time step.

The term �i=1
� Â�k , i , t�pk,t describes the number of nodes of

degree k at time t that change their degree due to the attach-
ment of 1, 2,…, or � edges. On the other hand, nodes of
degree k will be formed at time t+1 by the nodes of degree

k−1 at time t that receive 1 edge, nodes of degree k−2 at
time t that receive 2 edges, and so on. This process is de-

scribed by the term �i=1
� Â�k− i , i , t�pk−i,t.

Next, we derive an expression for Â�k , i , t�. We start out
by a simple case, �=0. Since in this case the probability for
an edge of attaching to a node is independent of its degree, if
we add � edges, the probability for a node of receiving a
single edge is ��1 /N��1−1 /N��−1, the probability of receiv-
ing two edges is � �

2 ��1 /N�2�1−1 /N��−2, and for the general
case we obtain the expression,

Â�k,i,t� = 
�

i
�
 1

N
�i
1 −

1

N
��−i

. �4�

Thus, the probability of receiving i new edges is binomially
distributed over i irrespective of the degree of the node. To
extend this result to ��0, we recall that if we add a single
edge, the probability for a node of degree k of receiving that
edge is �= ��k+1� / ���t+N�, where we have assumed that
previously to this edge we had added �t edges to the nodes
in U. Clearly, 1−� is the probability for the edge to attach to
some other node. Taking this into account, Eq. �4� is gener-
alized for �	0 as

Â�k,i,t� = 
�

i
�
 �k + 1

��t + N
�i
1 −

�k + 1

��t + N
��−i

. �5�

Inserting expression �5� into Eq. �3�, we obtain:

pk,t+1 = �1 − �
i=1

� 
�

i
�
 �k + 1

��t + N
�i
1 −

�k + 1

��t + N
��−i	pk,t

+ �
i=1

� 
�

i
�
��k − i� + 1

��t + N
�i
1 −

��k − i� + 1

��t + N
��−i

pk−i,t.

�6�

The terms between parentheses in the first line of Eq. �6�
can be simplified recalling that


1 −
�k + 1

��t + N
��

= 1 − �
i=1

� 
�

i
�
 �k + 1

��t + N
�i
1 −

�k + 1

��t + N
��−i

.

Therefore, Eq. �6� can be rewritten by including i=0 in the
sum, whereby we obtain

pk,t+1 = �
i=0

� 
�

i
����k − i� + 1

��t + N
	i

,

�1 −
��k − i� + 1

��t + N
	�−i

pk−i,t. �7�

In �21�, a similar growth model was analyzed under the
simplistic condition that the degree of an U node cannot
receive more than one edge per time step. This assumption is
fairly reasonable for �
N and small values of �. Then the
solution to Eq. �7� can be reasonably approximated by,
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pk,t = 
 t

k
��

i=0

k−1

��i + 1� �
j=0

t−1−k 
N

�
− 1 + �j�

�
m=0

t−1 
�m +
N

�
�

. �8�

The expression given by Eq. �8� was derived in �21�, and is
only an exact solution of Eq. �7� for �=1. As indicated in
�21�, for ��0, Eq. �8� approaches, asymptotically with time,
a � distribution, pk,t
C−1�k / t��−1−1�1−k / t��−�−1−1, where C
is the normalization constant and �=N / ����. From this ex-
pression it is clear that for �=1 there are four regimes asso-
ciated to �, a� A binomial distribution for �=0, b� a skewed
distribution which exhibits a mode that shifts with time for
0���1, c� a monotonically decreasing distribution with the
mode at k=0, for 1
�
 �N /��−1, and d� a u-shaped dis-
tribution, for �� �N /��−1.

However, the exact solution of Eq. �3� is not known in
general, and Eq. �7� has to be numerically computed. In Fig.
2, we compare for random attachment ��=0� the integration
of Eq. �7� and stochastic simulations. Equation �8� provides a
reasonable approximation of the process as long as � is very
small. Already for �	1, Eq. �8� deviates from the exact
solution which corresponds to the integration of Eq. �7�. Fig-
ures 2 and 3 show that Eq. �7� accurately describes stochastic
simulations for all parameter values.

C. One-mode projection

In this section, we analyze the degree distribution of the
one-mode projection of ABNs onto the set U. Formally, for
an ABN �U ,V ,E�, the one-mode projection onto U is a graph
GU : �U ,EU�, where ui ,uj �U are connected �i.e., �ui ,uj�
�GU� if there exists a node v�V such that �ui ,v��E and
�uj ,v��E. If there are w such nodes in V which are con-
nected to both ui and uj in the ABN then we say that in the
one-mode projection GU there is an edge linking ui and uj
with weight w. In the context of the codon-gene network, the
one-mode projection is a codon-codon network, where two
codons are connected by an edge with a weight that repre-
sents the number of genes, in which both of these codons
occur. The one-mode projection of an ABN provides insight
into the relationship between the basic units. For instance in
linguistics the one-mode projection of the word-sentence
ABN reveals the co-occurrence of word pairs, which in turn
provides crucial information about the syntactic and seman-
tic properties of the words �see, for example �25,26��.

Let us use the symbol pu�k , t� to refer to the probability
that a randomly chosen node from the one-mode projection
of an ABN with t nodes in V �i.e., after t time steps� has
degree k. Consider a node u�U that has degree k in the
ABN. Therefore, u is connected to k nodes in V, each of
which is connected to �−1 other nodes in U. Defining the
degree of a node as the number of edges attached to it, in the
one-mode projection, u has a degree of q=k��−1�. Conse-
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FIG. 2. �Color online� Comparison for random attachment ��=0� between the numerical integration of Eq. �7� �solid black curve� and
stochastic simulations �blue circles�. Circles correspond to average over 500 simulations. In both figures N=100. �a� corresponds to �
=20 while �b� to �=40. The dashed red curve corresponds to the approximation given by Eq. �8�. The inset in �b� shows in log-log scale the
deviation between Eq. �8�, the integration of Eq. �7�, and simulations.
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FIG. 3. �Color online� Comparison for strong preferential attachment ��	1� between the integration of Eq. �7� �solid black curve� and
stochastic simulations �blue circles�. Blue circles correspond to an average over 500 runs. In both figures N=100 and �=40. �a� corresponds
to �=1 while �b� to �=16. The dashed red curve in �a� indicates the approximation given by Eq. �8�, which falls out of the range of the figure
in �b�.
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quently, the degree distribution of GU, pu�q , t�, is related to
pk,t in the following way:

pu�q,t� = �p0,t if q = 0

pk=q/��−1�,t if � − 1 divides q

0 otherwise
� . �9�

Figure 4 shows a comparison between stochastic simula-
tions and Eq. �9�. Notice that this mapping simply implies
that pu�q=0, t�= p0,t, pu�q=�−1, t�= p1,t, pu�q=2��−1� , t�
= p2,t , . . . , pu�q= j��−1� , t�= pj,t. The same result can be de-
rived by using the generating function based technique de-
scribed in Eq. 70 of �27�. It is worth noticing that we have
assumed that the weight of edges in GU is one. Clearly, this
is not true in general.

Thresholded one-mode degree distribution

In the general case we have to consider that GU is a
weighted graph. The one-mode projections of ABNs can be
converted to an unweighted graph by the process of thresh-
olding. A thresholded one-mode projection graph �thresh-
olded GU� is constructed by replacing every weighted edge
in GU by a single edge iff the weight of that edge exceeds the
threshold value �; otherwise, the edge is deleted. Thresh-
olded degree distributions are more popular in the complex
network literature, than their weighted counterparts �see, for
example �25,28��. We shall denote the degree distribution,
thresholded at �, as pu�q , t ;��.

Let us start by considering two nodes u and u� in U with
degrees ku and ku�, respectively. We now try to derive an
expression for the probability p�ku ,ku� ,m� that there are ex-
actly m nodes in V that are linked simultaneously to both u
and u�. In other words, p�ku ,ku� ,m� is the probability that the
weight between u and u� is m in GU, given that the degrees
of the nodes are ku and ku� in U. Let us assume that the �
nodes that each node v�V is connected to, are all distinct.
By the definition of the growth model for ABNs, the event of
u being connected to a node v is independent of u� being
connected to the same node. Therefore, the probability that a
randomly chosen node v�V is connected to u is ku / t and the
probability that it is connected to u� is ku� / t. Recall that t
refers to the number of nodes in V. Thus, the probability that
v is connected to both u and u� is kuku� / t2. Therefore, the
probability that u and u� share m nodes in V takes the form,

p�ku,ku�,m� = 
 t

m
�
 kuku�

t2 �m
1 −
kuku�

t2 �t−m

. �10�

From Eq. �10�, the probability for u and u� of sharing an
edge in the thresholded GU is easily computed as,

p�ku,ku�;m � �� = �
m=�+1

t

p�ku,ku�,m� . �11�

Consequently, in the thresholded GU, the expected degree D
of a node u whose degree is k in the ABN is given by,

D�k,�� = N�
i=1

t

pi,tp�k,i;m � �� . �12�

Notice that then pk,t can be interpreted as the probability of
finding a randomly chosen node with degree D�k ,�� in the
thresholded one-mode projection. Thus, the degree distribu-
tion of the thresholded GU is computed as

pu�q,t;�� = �
q=�D�k,���

pk, �13�

where the function �a� returns the largest integer smaller than
a.

Figure 5 shows a comparison between Eq. �13� and sto-
chastic simulations for the one-mode projection at different
times. The implementation of Eq. �13� was done by summing
over the pk,t obtained from the stochastic simulations of the
corresponding ABN according to q= �D�k ,���, as indicated by
Eq. �12�.

III. REAL WORLD ABNS

A. Codon-gene network

As complete genomes of more and more organisms are
sequenced, phylogenetic trees reconstructed from genomic
data become increasingly detailed. Codon usage patterns in
different genomes can provide insight into phylogenetic re-
lations. However, except for a few earlier works �29�, studies
on the codon usage have not received much attention. One of
the main research issues here is to understand the influence
of randomness in the growth pattern of genome sequences in
connection to biological evolution. A well-known random
process in evolutionary biology is a random mutation in a
gene sequence. A gene sequence is a string defined over four
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FIG. 4. �Color online� Comparison between stochastic simulations for the one-mode projection �blue circles� and Eq. �9� �solid black
curve�. In both figures N=500 and �=1. Blue circles correspond to averages over 1000 simulations. In �a� �=5 while in �b� �=15.
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symbols �A, G, T, and C� that represent the nucleotides. A
codon is a triplet of adjacent nucleotides �e.g., AGT, CTA�
and codes for a specific amino acid �plus stop and start se-
quences�. There are only 64 codons. Interestingly, the rela-
tion codon-amino acid is not bijective, and several codons

can code for the same amino acid. Codon usage in genome
sequences varies among different phylogenetic groups.

1. Definition and construction

We represent the codon-gene network as an ABN, where
V is the collection of genes, i.e., the genome of the organ-
isms, and U is the set of nodes labeled by the codons. There
is an edge �u ,v��E that runs between V and U if and only if
the codon u occurs in the gene v. Figure 1 illustrates the
structure of the network.

We have analyzed eight organisms belonging to widely
different phylogenetic groups. These organisms have been
extensively studied in biology and genetics �30� and most
importantly, their genomes have been fully sequenced. In
Table I, we list these organisms along with a short descrip-
tion and the number of genes and codons �i.e., the cardinality
of V�. The data have been obtained from the Codon Usage
Database �31,32�. The usage of a particular codon in an or-
ganism’s genome sequence can be as high as one million. In
other words, the weighted degree of the nodes in U can be
arbitrarily large. This, together with the fact that there are
only 64 nodes in U, presents us with the nontrivial task of
estimating the probability distribution pk, having a very large
event space �between 0 and a few millions�, from very few
observations �only 64�.

A possible strategy to cope with this situation is through
binning of the event space. For example, if we use a bin size
of 104, then degree 1 to degree 104 is compressed to a single
bin which we label as 1, the next 104 degrees are mapped
into the bin 2, and so on. Consequently, if for a particular
organism the codon count is m, then the maximum degree of
a codon node can be at most m. This implies that using a bin
size of 104, there will be up to m /104 bins �or possible
events�, in which the 64 data points will be distributed. If all
organisms are analyzed using the same bin size, depending
on the length of the organism’s genome, i.e., the codon count
m, one obtains different numbers of bins. Alternatively, the
bin size can be set for each organism in such a way that the
resulting number of bins remains the same for all organisms.
Thus, if we wish to have b bins for all organisms, the bin size
for a particular organism will be m /b. Here, we analyze the
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FIG. 5. �Color online� Comparison between stochastic simula-
tions for the one-mode projection at different times �symbols� and
Eq. �13� �solid curves�. In �a� �=0, N=1000, �=5, �=1. The blue
circles and the red �light gray� curve correspond to t=20, while the
blue squares and the black curve to t=100. The slight deviation of
the simulation results from the theoretical predictions is due to the
rounding of the values. In �b� �=10, N=100, �=20, �=1.5. The
blue circles and the red �light gray� curve correspond to t=50, while
the blue squares and the black curve to t=100.

TABLE I. List of organisms along with their probable origin time �in Million Years Ago current time� and
codon and gene counts.

Organism’s Name Description
Origin time

�MYA� Gene count Codon count

Myxococcus xanthus Gram-negative rod-shaped bacterium 3200 7421 2822743

Dictyostelium discoideum Soil-living amoeba 2100 3369 1962284

Plasmodium falciparum Protozoan parasite 542 4098 3032432

Saccharomyces cerevisiae Single-celled fungi 488 14374 6511964

Xenopus laevis Amphibian, African clawed frog 416 12199 5313335

Drosophila melanogaster Two-winged insect, fruit fly 270 40721 21393288

Danio rerio Tropical fish, zebrafish 145 19062 8042248

Homo sapiens Bipedal primates, Human 2 89533 38691091
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data using both methods: fixed bin size and fixed number of
bins.

Apart from binning, another way to cope with the
problem of data sparseness is to compute the cumulative
degree distribution Pk,t rather than the standard degree
distribution pk,t. Pk,t is defined as the probability that a
randomly chosen node has a degree less than or equal to k.
Thus,

Pk,t = �
i=0

k

pi,t. �14�

The cumulative distribution is more robust to the noise
present in the observed data points, but at the same time it
contains all the information present in pk,t �33�. Note that
even though it is a standard practice in statistics to define
cumulative distributions as stated in Eq. �14�, in the complex
network literature it is often defined as the probability that a
randomly chosen node has degree “greater than or equal to”
k. In the rest of the paper, the definition given by Eq. �14�
will be used. Finally, Fig. 6 shows a comparison between the
empirical degree distribution for Xenopus leavis and the best
fit obtained using Eq. �8� �see below for details� for both, pk,t
and Pk,t.

2. Growth model

A particular gene does not acquire all its constituent
codons at a single time instant but evolves from an ancestral
gene through the process of mutation, which implies the ad-
dition, deletion, or substitution of codons in the ancestral
gene �34�. Therefore, we build the networks using the fol-
lowing parameters: N=64, �=1, and t corresponds to the
number of codons that appear in the genome of the organism.
In our model, we have a single free parameter, �. In conse-
quence, to describe the degree distribution of the empirical
data using Eq. �8�, we have to find out the value of � that
best fits the data. The best fitting �, according to the least-
squares method, is the value of � that minimizes the square
error, which is defined as,

Error = �
k=0

�

�pk,t��� − pk,t
� �2, �15�

where pk,t
� represents the empirical distribution, while pk,t���

is the theoretical distribution given by Eq. �8�. So, to obtain
the best fitting �, the Error is computed for all values of � in
the range from 0 to 5, using steps in � of 0.01. As can be
seen in Fig. 7, the Error shows a smooth behavior exhibiting
a clear global minimum for all eight organisms. For values of
� larger than 5 �data not shown� Error gets monotonically
larger, confirming the presence of a single �global� minimum.
In consequence, the minimum was determined with a preci-
sion of �0.01 using both methods: fixed bin size and fixed
bin count.

Figure 8 shows the cumulative real data and correspond-
ing theoretical distributions of the eight organisms listed in
Table I. Table II lists the values of � for two different meth-
ods of binning: fixed bin count �bin count=20� fixed bin size
�bin size=104�. It can be observed that the degree distribu-
tions can be classified into two distinct groups corresponding
to their � value. As discussed in Sec. II, Eq. �8� describes
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FIG. 6. �Color online� Degree distribution of the codon nodes for Xenopus leavis. In �a� a comparison between the empirical data �blue
circles� and the theoretical pk,t obtained using Eq. �8� �black solid curve� is shown. The cumulative distribution of the real data �blue circles�
and the theory �black solid curve� are shown in �b�.
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four possible degree distributions depending on �, two of
them corresponding to a range of �: �i� 0���1 and �ii� 1

�
 �N /��−1. Thus, Table II shows that the degree distri-
bution of the eight organisms belongs either to category �i� or
�ii�. Myxococcus xanthus, Dictyostelium discoideum, and
Plasmodium falciparum fall into category �ii�, while the rest
falls into �i�. Note that the classification of the organisms
remains the same even after changing the statistics from
fixed bin size to fixed bin count. Moreover, the classification
is robust against changes in the bin size, as it was observed
by repeating the data analysis for various bin sizes.

Interestingly, the three organisms with the larger � value
�between 1.36 and 2.38 for fixed bin size� are the more
primitive ones. The rest �with a value of � between 0.11 and
0.35� came into existence at a later stage of evolution.

This analysis allows us to speculate that in Myxococcus
xanthus, Dictyostelium discoideum, and Plasmodium falci-
parum the degree of randomness during codon selection has
been much lower than in Saccharomyces cerevisiae, Xenopus
laevis, Drosophila melanogaster, Danio rerio, and Homo sa-
piens. These findings are probably correlated with the origin
time and the evolutionary processes that shaped the usage of
codons as follows. Let us think of evolution as the product of

“copy-paste” operations. In this way, new genes emerge as
result of imperfect copy-paste operations where the ancestral
genes that are being copied are altered by addition, deletion
or substitution of codons. Thus, copy-paste operations with-
out defects lead to a high degree of “preferential attach-
ment,” while mutations/defects increase the degree of ran-
domness. In consequence, we expect newly born species/
organisms to exhibit a higher degree of randomness than
their ancestor, given the greater number of mutations expe-
rienced by the newly formed organisms �35�. The value of �
in Table II reflects this fact, and suggests that knowledge at
the level of codon usage �i.e., �� can be used as a criterion to
classify organisms.

B. Phoneme-language network

In this section we attempt to explain the self-organization
of the consonant inventories through ABNs, where the con-
sonants make up the basic units and languages are thought as
discrete combinations of them. In fact, the most basic units
of human languages are the speech sounds. The repertoire of
sounds that make up the sound inventory of a language are
not chosen arbitrarily. Indeed, the inventories show excep-
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FIG. 8. �Color online� Cumulative degree distributions for the empirical data �blue circles� and their corresponding theoretical best � fits
through Eq. �8� �solid black curve� for the organisms. �a� Myxococcus xanthus, �b� Dictyostelium discoideum, �c� Plasmodium falciparum,
�d� Saccharomyces cerevisiae, �e� Xenopus laevis, �f� Drosophila melanogaster, �g� Danio rerio, and �h� Homo sapiens.

TABLE II. The values of � that yield best fit for the degree distribution under the two different binning
strategies.

Organism’s Name Best � �fixed bin size� Best � �fixed bin count�

Myxococcus xanthus 2.35 2.1

Dictyostelium discoideum 2.38 2.57

Plasmodium falciparum 1.36 1.81

Saccharomyces cerevisiae 0.35 0.34

Xenopus laevis 0.11 0.11

Drosophila melanogaster 0.28 0.2

Danio rerio 0.14 0.1

Homo sapiens 0.20 0.09
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tionally regular patterns across the languages of the world,
which is arguably an outcome of the self-organization that
goes on in shaping their structures �36�. In order to explain
this self-organizing behavior of the sound inventories, vari-
ous functional principles have been proposed such as ease of
articulation �37,38�, maximal perceptual contrast �37� and
learnability �38�. The structure of vowel inventories has been
successfully explained through the principle of maximal per-
ceptual contrast �37,38�. Although there have been some lin-
guistically motivated work investigating the structure of the
consonant inventories, most of it is limited to certain specific
properties rather than providing a holistic explanation of the
underlying principle of organization.

1. Definition and construction

A first study of the consonant-language network as an
ABN can be found in �39�. Here we follow the same defini-
tions given in �39� where U is the universal set of consonants
and V is the set of languages of the world. There is an edge
�u ,v��E iff the consonant u occurs in the sound inventory
of the language v. Figure 9 illustrates the structure of this
ABN together with its associated one-mode projection onto
the consonant nodes.

Many typological studies �37,40,41� of segmental inven-
tories have been carried out in the past on the UCLA phono-
logical segment inventory database �UPSID� �42�. UPSID
records the sound inventories of 317 languages covering all
the major language families of the world. In this work, we
have used UPSID consisting of these 317 languages and 541
consonants found across them, for constructing ABN. Con-
sequently, there are 317 elements �nodes� in the set V and
541 elements �nodes� in the set U. We selected UPSID
mainly due to two reasons—�a� it is the largest database of
this type that is currently available and, �b� it has been con-
structed by selecting one language each from moderately dis-
tant language families, ensuring a good balance between rep-
resentatives from different origins.

2. Topological properties

Figure 10 illustrates the �cumulative� degree distribution
of U. Since the degree of a language node is actually repre-

senting the size of a consonant inventory, we take as �, i.e.,
the degree of each V node, the average number of consonants
in human languages which is 22. Actually, the inventory size
distribution of languages follow a skewed � distribution with
mean=22 �see Fig. 2 of �39��. About 90% of the inventories
in UPSID have sizes between 18 and 30. Therefore, the as-
sumption that the each node in V has a constant degree does
not render a big difference in the results. We have even simu-
lated the model using the exact distribution of the consonant
inventory sizes, and the results were slightly, but not signifi-
cantly better �see Fig. 7 of �39��. This averaging was neces-
sary because, recall that in the theoretical analysis of the
ABN growth model the degree of each node in V has been
assumed to be a constant �i.e., ��.

3. Growth model

In order to obtain a theoretical description of the degree
distribution of the consonant nodes in the ABN we employ
the growth model described in Sec. II B with parameters �
=22 and N=541. This means that we are assuming that each
language has 22 consonant. The total number of consonants
in the database is 541. Since there are 317 languages, we
take t=317. Thus, � is again the only free parameter in the
model. The best fit of the data was obtained with �=14 �Fig.
10�. As before, the fitting was performed by minimizing error
�see Eq. �15�� between the theoretical prediction and the em-
perical data.

4. One-mode projection

Interestingly, when we reconstruct the one-mode projec-
tion from the theory we find that we cannot match the em-
pirical data. Figure 11 shows the cumulative degree distribu-
tions of the one-mode projection of the real data and
theoretical one. The results show a larger quantitative differ-
ence between the curves compared to that between their bi-

FIG. 9. Illustration of the phoneme-language ABN �referred in
the figure as PlaNet� and its corresponding one-mode projection
�referred as PhoNet�.

FIG. 10. �Color online� Cumulative degree distribution of U,
i.e., the consonant nodes. Red squares correspond to the empirical
data and the solid black line corresponds to the theoretical solution
obtained through integration of Eq. �6� with �=14.
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partite counterparts. It indicates that the one-mode projection
has a more complex structure than that, which could have
emerged from a simple preferential attachment based kernel.

Nevertheless, we observe that preferential attachment can
explain the occurrence distribution of the consonants over
languages to a good extent. One possible way to explain this
observation would be that a consonant, which is prevalent
among the speakers of a given linguistic generation, tends to
be more prevalent in the subsequent generations with a very
little randomness involved in this whole process. It is this
microlevel dynamics that manifests itself as preferential at-
tachment in this ABN. However, the fact that the co-
occurrence distribution of the consonants, i.e., the degree
distribution of the one-mode projection, is not fully ex-
plained by the growth model implies that there are other
organizing principles that are involved in shaping the struc-
ture of the consonant inventories.

IV. RELATED MODELS

As mentioned in the introduction, DCSs can be alterna-
tively studied in the framework of Urn models that are popu-
lar in probability theory. Particularly relevant for us is the
so-called Finite Pólya’s process �22,23�. The process is de-
fined as follows:

�1� Imagine a system consisting of N bins, each of them
containing one ball at time t=0,

�2� at the time step t+1, place a new ball in the i-th bin
with a probability proportional to ni

��t�, where ni�t� is the
number of balls in the i-th bin at time t, and the exponent �
is a model parameter.

The Finite Pólya’s process is closely related to the devel-
oped ABN growth model for �=1. In order to make a com-
parison between both models, we consider the urns to be
equivalent to the nodes in the fixed partition, i.e., the elemen-
tary units, and the balls to the degree of these nodes. Though,
there are several similarities between both models, there are

also several differences. For instance, notice that by defini-
tion, Pólya’s process requires step �1�, which means every
bin is assumed to have one ball at time t=0, and �=1. In
contrast, in the ABN growth model we can assume any initial
condition, and �	1. It is easy to see that if in the step �1� of
the Finite Pólya’s process, the urns are assumed to contain
1 /� balls instead of one ball, then this modified process, and
for �=1, corresponds to the ABN model, under the mapping
ni

ABN�ni
Polya−1 /�, where ni

ABN refers to the degree of the
i-th node in the ABN model, ni

Polya to the number of balls in
the Finite Pólya’s process, and 1 /� to the initial number of
balls. Nevertheless, by definition the Pólya’s process cannot
start with a fractional number of balls in the urns. Therefore,
the attachment process in ABN is a stronger generalization of
the finite Pólya’s process with �=1, with an extra parameter,
�. In summary, the shape of the urn-size distribution �equiva-
lent to the degree distribution in ABNs� in a Finite Pólya’s
process is controlled by varying �, while in ABNs, the emer-
gent degree distribution is determined by �. It is also impor-
tant to notice that the use of a linear attachment probability
has allowed us to obtain an analytical closed form for the
case of �=1, and to derive the exact expression for the time
evolution of the degree distribution for ��1. However, we
stress that it could be interesting to explore the ABN growth
model that results from combining both degrees of freedom,
� and �, in such a way that the attachment probability be-
comes proportional to �ni

��t�+1.
Another class of models for nongrowing bipartite net-

works has been developed by Evans and Plato in �19�
�henceforth, the EP model�. The EP model is based on the
concept of rewiring and closely resembles the Urn model. In
this study, one of the partitions, which the authors refer to as
the set of artifacts, is fixed. The nodes in the other partition
are referred to as individuals, all of which have degree one.
The names artifacts and individuals reflect the fact that the
model was initially conceived to describe cultural transmis-
sion. Note that artifacts and individuals are comparable in
the context of an ABN to the basic units and their discrete
combinations, respectively. In the EP model, there are fixed
number of edges. At every time step, an artifact node is se-
lected following a distribution �R and an edge that is con-
nected to the chosen artifact is picked up at random. This
edge is then rewired to another artifact node which is chosen
according to a distribution �A. During the rewiring process
the other end of the edge is always attached to the same
individual node. The authors derive the exact analytical ex-
pressions for the degree distribution of the artifact nodes at
all times and for all values of the parameters for the follow-
ing definitions of the removal and attachment probabilities:

�R =
k

E
, �A = pr

1

N
+ pp

k

E
,

where E, N, and k stands for the number of edges, the num-
ber of artifacts, and the degree of an artifact node, respec-
tively. Furthermore, pr and pp, which add up to one, are
positive constants �model parameters� that control the bal-
ance between random and preferential attachment.

FIG. 11. �Color online� Cumulative degree distribution of the
one-mode projection. Red squares correspond to the empirical data,
while the solid black curve refers to the theoretical approximation.
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The EP model is comparable to the ABN growth model
for ��1, except for the fact that the total number of edges in
the latter case diverges with time, which changes the scenario
completely. If we rewrite the attachment probability for the
sequential growth model in a form similar to that of �A, we
obtain the following expressions for the parameters pr and
pp.

pr =
1

1 + �t/N
, pp =

�t/N
1 + �t/N

.

Clearly, as t→�, pr→0, and pp→1, whereas in the EP
model these parameters are fixed. Thus, apart from the two
extreme cases of pr=0 and pr=1, the two models are funda-
mentally different, a fact which is also manifested in their
emergent degree distributions. For instance, in the EP model
the distributions reach a steady state, while this does not
occur in ABNs. In addition, while for ABNs, we observe four
distinct types of degree distributions, the equilibrium degree
distribution of the EP model shows only two patterns: in-
verse power law with exponential cut off �comparable to the
case when ��1�, and a u-shaped distribution �comparable to
the case of very large ��.

V. CONCLUSION AND DISCUSSION

In the preceding sections we have shown that DCSs can
be described in terms of a special class of networks, the
ABNs. In particular, we have generalized and extended pre-
vious results for ABNs �21� to include growth models where
at each time step a discrete combination of ��1 basic units
is added to the system �43�. In addition, we have studied the
properties of the one-mode projection network onto the DCS
elementary units. Finally, and very importantly, we have
shown how ABNs can be applied to analyze real-world
DCSs. We have used the ABN analytical framework to char-
acterize the codon-gene and phoneme-language network.
The ABN approach has proven to be a very powerful tool to
understand the selection process of elementary units during
the generation of DCS discrete combination in real systems.
We have shown that the model parameter � gives a good
measure of the relative weight between random and prefer-
ential attachment during the selection process.

From the codon-gene network analysis, we have learned
that codon usage can help to classify organisms. Our study
has revealed that the eight analyzed organisms can be clas-
sified into two sets according to its � value. The results sug-
gest that an ABN approach can further contribute to the re-
construction of phylogenetic relations. The use of ABN may
be especially useful for the analysis of genome sequences
which are so far only available in fragments either due to
fragmentary sampling of the biological material or to unfin-
ished sequencing efforts.

On the other hand, from the phoneme-language network
analysis we have learned that the occurrence distribution of
the consonants over languages can be explained in terms of
an ABN with a strong degree of preferential attachment.
However, the simple ABN growth models analyzed here
have failed to explain co-occurrence distribution of the con-
sonants, i.e., the degree distribution of the one-mode projec-
tion. This suggests more complex organizing principles ab-
sent in the current ABN growth models. There are some
natural generalizations of the current ABN growth models
that can certainly help to improve the description of the real
phoneme-language network in terms of ABNs. For instance,
rewiring during the growth of the ABN can be added to the
theoretical description. The use of nonlinear attachment ker-
nels can also help to improve the match between theory and
real data. In fact, it has been recently shown through simu-
lations that the degree distribution of the consonant nodes in
the phoneme-language ABN can be better explained by using
a superlinear kernel �44�. We expect the study of nonlinear
kernels and rewiring in ABNs to be the focus of future re-
search.
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